鉴于HEP研究的核心,数据科学(DS)和机器学习(ML)在高能量物理学(HEP)中的作用增长良好和相关。此外,利用物理数据固有的对称性激发了物理信息的ML作为计算机科学研究的充满活力的子场。 HEP研究人员从广泛使用的材料中受益匪浅,可用于教育,培训和劳动力开发。他们还为这些材料做出了贡献,并为DS/ML相关的字段提供软件。物理部门越来越多地在DS,ML和物理学的交集上提供课程,通常使用HEP研究人员开发的课程,并涉及HEP中使用的开放软件和数据。在这份白皮书中,我们探讨了HEP研究与DS/ML教育之间的协同作用,讨论了此交叉路口的机会和挑战,并提出了将是互惠互利的社区活动。
translated by 谷歌翻译
在CERN大强子撞机(LHC)的碰撞中的带电粒子轨迹的测定是一个重要但挑战性的问题,特别是在LHC(HL-LHC)的未来高亮度相期间的高相互作用密度条件下。图形神经网络(GNNS)是一种类型的几何深度学习算法,通过将跟踪器数据嵌入作为图形节点来成功应用于此任务的几何深度学习算法,而边缘表示可能的曲线段 - 并将边缘分类为真实或假轨道段。但是,由于其大量的计算成本,它们在基于硬件或软件的触发器应用中的研究受到限制。在本文中,我们介绍了一个自动翻译工作流程,集成到一个名为$ \ texttt {hls4ml} $的更广泛的工具中,用于将GNN转换为现场可编程门阵列(FPGA)的固件。我们使用此翻译工具实现用于带电粒子跟踪的GNN,使用TrackML挑战DataSet在FPGA上培训,其中设计针对不同的图表大小,任务复杂和延迟/吞吐量要求。该工作可以在HL-LHC实验的触发水平下纳入带电粒子跟踪GNN。
translated by 谷歌翻译
最近的工作已经证明了图形神经网络(GNN)等几何深度学习方法非常适合于在高能粒子物理学中解决各种重建问题。特别地,粒子跟踪数据通过识别硅跟踪器命中作为节点和粒子轨迹作为边缘来自然表示为曲线图;给定一组假设的边缘,边缘分类GNN标识与真实粒子轨迹相对应的那些。在这项工作中,我们将物理激励的相互作用网络(IN)GNN调整为与高亮度大强子撞机的预期相似的填充条件中的粒子跟踪问题。假设在各种粒子矩阈值下进行理想化的击中过滤,我们通过在基于GNN的跟踪的每个阶段进行了一系列测量来展示了优异的边缘分类精度和跟踪效率:图形结构,边缘分类和轨道建筑。建议的建筑基本上比以前研究的GNN跟踪架构小幅小;这尤其希望,因为大小的减小对于在受约束的计算环境中实现基于GNN的跟踪至关重要。此外,可以将其表示为一组显式矩阵操作或传递GNN的消息。正在进行努力,以通过异构计算资源朝向高级和低延迟触发应用程序加速每个表示。
translated by 谷歌翻译